❌ About FreshRSS
There are new available articles, click to refresh the page.
Before yesterdayYour RSS feeds

Stockeld Dreamery loves cheese so much that it raised $20M to make it out of legumes

By Christine Hall

Cheese is one of those foods that when you like it, you actually love it. It’s also one of the most difficult foods to make from something other than milk. Stockeld Dreamery not only took that task on, it has a product to show for it.

The Stockholm-based company announced Thursday its Series A round of $20 million co-led by Astanor Ventures and Northzone. Joining them in the round — which founder Sorosh Tavakoli told TechCrunch he thought was “the largest-ever Series A round for a European plant-based alternatives startup,” was Gullspång Re:food, Eurazeo, Norrsken VC, Edastra, Trellis Road and angel investors David Frenkiel and Alexander Ljung.

Tavakoli previously founded video advertising startup Videoplaza, and sold it to Ooyala in 2014. Looking for his next project, he said he did some soul-searching and wanted the next company to do something with an environmental impact. He ended up in the world of food, plant-based food, in particular.

“Removing the animal has a huge impact on land, water, greenhouse gases, not to mention the factory farming,” he told TechCrunch. “I identified that cheese is the worst. However, though people are keen on shifting their diet, when they try alternative products, they don’t like it.”

Tavakoli then went in search of a co-founder with a science background and met Anja Leissner, whose background is in biotechnology and food science. Together they started Stockeld in 2019.

Pär-Jörgen Pärson, general partner at Northzone, was an investor in Videoplaza and said via email that Stockeld Dreamery was the result of “the best of technology paired with the best of science,” and that Tavakoli and Leissner were “using their scientific knowledge and vision of the future and proposing a commercial application, which is very rare in the foodtech space, if not unique.”

The company’s first product, Stockeld Chunk, launched in May, but not without some trials and tribulations. The team tested over 1,000 iterations of their “cheese” product before finding a combination that worked, Tavakoli said.

Advances in the plant-based milk category have been successful for the most part, not necessarily because of the plant-based origins, but because they are tasty, he explained. Innovation is also progressing in meat, but cheese still proved difficult.

“They are typically made from starch and coconut oil, so you can have a terrible experience from the smell and the mouth feel can be rubbery, plus there is no protein,” Tavakoli added.

Stockeld wanted protein as the core ingredient, so Chunk is made using fermented legumes — pea and fava in this case — which gives the cheese a feta-like look and feel and contains 30% protein.

Chunk was initially launched with restaurants and chefs in Sweden. Within the product pipeline are spreadable and melting cheese that Tavakoli expects to be on the market in the next 12 months. Melting cheese is one of the hardest to make, but would open up the company as a potential pizza ingredient if successful, he said.

Including the latest round, Stockeld has raised just over $24 million to date. The company started with four employees and has now grown to 23, and Tavakoli intends for that to be 50 by the end of next year.

The new funding will enable the company to focus on R&D, to build out a pilot plant and to move into a new headquarters building next year in Stockholm. The company also looks to expand out of Sweden and into the U.S.

“We have ambitious investors who understand what we are trying to do,” Tavakoli said. “We have an opportunity to think big and plan accordingly. We feel we are in a category of our own in a sense that we are using legumes for protein. We are almost like a third fermented legumes category, and it is exciting to see where we can take it.”

Eric Archambeau, co-founder and partner at Astanor Ventures, is one of those investors. He also met Tavakoli at his former company and said via email that when he was pitched on the idea of creating “the next generation of plant-based cheese,” he was interested.

“From the start, I have been continuously impressed by the Stockeld team’s diligence, determination and commitment to creating a truly revolutionary and delicious product,” Archambeau added. “They created a product that breaks the mold and paves the way towards a new future for the global cheese industry.”

So … What If Aliens’ Quantum Computers Explain Dark Energy?

By Stephon Alexander
A wild thought experiment by Jaron Lanier and physicist Stephon Alexander concerning gravitons, virtual reality, and Incan khipu.

Should Kids Get Covid Shots Through Off-Label Prescriptions?

By Maryn McKenna
The CDC and FDA are begging docs not to jump the gun on giving children the shot before clinical trials can establish the risk of side effects for young users.

An Experimental Birth Control Attacks Sperm Like a Virus

By Sara Harrison
Monoclonal antibodies have been touted for their potential to fight off infections like Covid-19. Could they be used as contraceptives too?

The Delta Variant Is Making Covid a Pandemic of the Young

By Gregory Barber
Children and teens have been spared the worst of the pandemic, but without vaccines they’re sitting ducks as the virus rages. What risks are they facing?

Nothing Can Eat Australia’s Cane Toads—So They Eat Each Other

By John Timmer, Ars Technica
The species' relentless invasion of the continent has taken a turn towards cannibalism.

Computer Scientists Find a Key Research Algorithm's Limits

By Nick Thieme
The most widely used technique for optimizing values of a math function turns out to be a fundamentally difficult computational problem.

Radioactive Rat Snakes Could Help Monitor Fukushima Fallout

By Susan D'Agostino
Scientists have attached dosimeters to the reptiles so they can serve as living “bioindicators” to gauge contamination levels near the shuttered nuclear power plant.

Why Florida’s Covid Surge Is Screwing With the Water Supply

By Matt Simon
More people in the hospital means more people need oxygen. But treatment plants also need the gas to purify water.

New Vaccine Decisions, an Influx of Mandates, and More News

By Eve Sneider
Catch up on the most important updates from this week.

Would the Free Guy Inflatable Bubble Protect a Real Person?

By Rhett Allain
In the movie’s video game world, a whole-body airbag protects Ryan Reynolds as he falls off of a building and onto a car. Would that … work?

Titan’s Strange Chemical World Gets Simulated in Tiny Tubes

By Eric Niiler
A research chemist mixed nitrogen, methane, and other molecules to re-create the conditions that might harbor life on one of Saturn’s moons.

Vaccine Mandates Work—but Only If They’re Done Right

By Adam Rogers
Requiring people to get their shots can stop Covid-19, but those rules have to be doable and equitable.

Afghanistan Almost Beat Polio. Now the Future Is Uncertain

By Maryn McKenna
It’s a heart-stopping moment for health officials, who reported only a single case this year—and whose campaigns may end up paused.

Avalo uses machine learning to accelerate the adaptation of crops to climate change

By Devin Coldewey

Climate change is affecting farming all over the world, and solutions are seldom simple. But if you could plant crops that resisted the heat, cold, or drought instead of moving a thousand miles away, wouldn’t you? Avalo helps plants like these become a reality using AI-powered genome analysis that can reduce the time and money it takes to breed hardier plants for this hot century.

Founded by two friends who thought they’d take a shot at a startup before committing to a life of academia, Avalo has a very direct value proposition, but it takes a bit of science to understand it.

Big seed and agriculture companies put a lot of work into creating better versions of major crops. By making corn or rice ever so slightly more resistant to heat, insects, drought or flooding, they can make huge improvements to yields and profits for farmers, or alternatively make a plant viable to grow somewhere it couldn’t before.

“There are big decreases to yields in equatorial areas — and it’s not that corn kernels are getting smaller,” said co-founder and CEO Brendan Collins. “Farmers move upland because salt water intrusion is disrupting fields, but they run into early spring frosts that kill their seedlings. Or they need rust resistant wheat to survive fungal outbreaks in humid, wet summers. We need to create new varieties if we want to adapt to this new environmental reality.”

To make those improvements in a systematic way, researchers emphasize existing traits in the plant; this isn’t about splicing in a new gene but bringing out qualities that are already there. This used to be done by the simple method of growing several plants, comparing them, and planting the seeds of the one that best exemplifies the trait — like Mendel in Genetics 101.

Nowadays, however, we have sequenced the genome of these plants and can be a little more direct. By finding out which genes are active in the plants with a desired trait, better expression of those genes can be targeted for future generations. The problem is that doing this still takes a long time — as in a decade.

The difficult part of the modern process stems (so to speak) from the issue that traits, like survival in the face of a drought, aren’t just single genes. They may be any number of genes interacting in a complex way. Just as there’s no single gene for becoming and Olympic gymnast, there isn’t one for becoming drought-resistant rice. So when the companies do what are called genome-wide association studies, they end up with hundreds of candidates for genes that contribute to the trait, and then must laboriously test various combinations of these in living plants, which even at industrial rates and scales takes years to do.

Numbered, genetically differentiated rice plants being raised for testing purposes.

“The ability to just find genes and then do something with them is actually pretty limited as these traits become more complicated,” said Mariano Alvarez, co-founder and CSO of Avalo. “Trying to increase the efficiency of an enzyme is easy, you just go in with CRISPR and edit it — but increasing yield in corn, there are thousands, maybe millions of genes contributing to that. If you’re a big strategic [e.g. Monsanto] trying to make drought tolerant rice, you’re looking at 15 years, 200 million dollars… it’s a long play.”

This is where Avalo steps in. The company has built a model for simulating the effects of changes to a plant’s genome, which they claim can reduce that 15-year lead time to 2 or 3, and the cost by a similar ratio.

“The idea was to create a much more realistic model for the genome that’s more evolutionarily aware,” said Collins. That is, a system that models the genome and genes on it that includes more context from biology and evolution. With a better model, you get far fewer false positives on genes associated with a trait, because it rules out far more as noise, unrelated genes, minor contributors, and so on.

He gave the example of a cold-tolerant rice strain that one company was working on. A genome-wide association study found 566 “genes of interest,” and to investigate each costs somewhere in the neighborhood of $40K due to the time, staff, and materials required. That means investigating this one trait might run up a $20M tab over several years, which naturally limits both the parties who can even attempt such an operation, and the crops that they will invest the time and money in. If you expect a return on investment, you can’t spend that kind of cash improving a niche crop for an outlier market.

“We’re here to democratize that process,” said Collins. In that same body of data relating to cold-tolerant rice, “We found 32 genes of interest, and based on our simulations and retrospective studies, we know that all of those are truly causal. And we were able to grow 10 knockouts to validate them, 3 in a 3-month period.”

In each graph, dots represent confidence levels in genes that must be tested. The Avalo model clears up the data and selects only the most promising ones.

To unpack the jargon a little there, from the start Avalo’s system ruled out more than 90 percent of the genes that would have had to be individually investigated. They had high confidence that these 32 genes were not just related, but causal — having a real effect on the trait. And this was borne out with brief “knockout” studies, where a particular gene is blocked and the effect of that studied. Avalo calls its method “gene discovery via informationless perturbations,” or GDIP.

Part of it is the inherent facility of machine learning algorithms when it comes to pulling signal out of noise, but Collins noted that they needed to come at the problem with a fresh approach, letting the model learn the structures and relationships on its own. And it was also important to them that the model be explainable — that is, that its results don’t just appear out of a black box but have some kind of justification.

This latter issue is a tough one, but they achieved it by systematically swapping out genes of interest in repeated simulations with what amount to dummy versions, which don’t disrupt the trait but do help the model learn what each gene is contributing.

Avalo co-founders Mariano Alvarez (left) and Brendan Collins by a greenhouse.

“Using our tech, we can come up with a minimal predictive breeding set for traits of interest. You can design the perfect genotype in silico [i.e. in simulation] and then do intensive breeding and watch for that genotype,” said Collins. And the cost is low enough that it can be done by smaller outfits or with less popular crops, or for traits that are outside possibilities — since climate change is so unpredictable, who can say whether heat- or cold-tolerant wheat would be better 20 years from now?

“By reducing the capital cost of undertaking this exercise, we sort of unlock this space where it’s economically viable to work on a climate-tolerant trait,” said Alvarez.

Avalo is partnering with several universities to accelerate the creation of other resilient and sustainable plants that might never have seen the light of day otherwise. These research groups have tons of data but not a lot of resources, making them excellent candidates to demonstrate the company’s capabilities.

The university partnerships will also establish that the system works for “fairly undomesticated” plants that need some work before they can be used at scale. For instance it might be better to super-size a wild grain that’s naturally resistant to drought instead of trying to add drought resistance to a naturally large grain species, but no one was willing to spend $20M to find out.

On the commercial side, they plan to offer the data handling service first, one of many startups offering big cost and time savings to slower, more established companies in spaces like agriculture and pharmaceuticals. With luck Avalo will be able to help bring a few of these plants into agriculture and become a seed provider as well.

The company just emerged from the IndieBio accelerator a few weeks ago and has already secured $3M in seed funding to continue their work at greater scale. The round was co-led by Better Ventures and Giant Ventures, with At One Ventures, Climate Capital, David Rowan and of course IndieBio parent SOSV participating.

“Brendan convinced me that starting a startup would be way more fun and interesting than applying for faculty jobs,” said Alvarez. “And he was totally right.”

This Barnacle-Inspired Glue Seals Bleeding Organs in Seconds

By Max G. Levy
The paste sticks onto wet tissue firmly by repelling blood. Surgeons hope it can save time—and lives.

Would It Be Fair to Treat Vaccinated Covid Patients First?

By Adam Rogers
Last week, Texas health care policymakers discussed taking vaccination status into account for Covid triage. It’s a larger conversation ethicists are bracing for.

So Hey Here’s a Tortoise Hunting and Eating a Baby Bird

By Matt Simon
How does one of the slowest animals on Earth manage to chase down a bird? Have a look for yourself.

Can This Sun-Reflecting Fabric Help Fight Climate Change?

By Jess Craig
An experimental textile called metafabric is designed to cool down the wearer and reduce the need for air-conditioning.

Rocket Lab’s Mars mission gets green light from NASA

By Devin Coldewey

Rocket Lab is one step closer to going to Mars with NASA’s approval of the company’s Photon spacecraft for an upcoming science mission. If all continues according to plan the two craft will launch in 2024 and arrive on the red planet 11 months later to study its magnetosphere.

The mission is known as the Escape and Plasma Acceleration and Dynamics Explorers, or ESCAPADE (hats off to whoever worked that one out), and was proposed for a small satellite science program back in 2019, eventually being chosen as a finalist. UC Berkeley researchers are the main force behind the science part.

These satellites have to be less than 180 kilograms (about 400 pounds) and must perform standalone science missions, part of a new program aiming at more lightweight, shorter lead missions that can be performed with strong commercial industry collaboration. A few concepts have been baking since the original announcement of the program, and ESCAPADE just passed Key Decision Point C, meaning it’s ready to go from concept to reality.

This particular mission is actually a pair of satellites, a perk that no doubt contributed to its successful selection. Rocket Lab’s whole intention with the Photon program is to provide a more or less turnkey design for various space operations, from orbital work to interplanetary science missions like this one.

Interestingly, Rocket Lab won’t actually be launching the mission aboard one of its Electron rockets — the satellites will be aboard a “NASA-provided commercial launch vehicle,” which leaves it up to them. Perhaps by that time the company will be in the running for the contract, but for now Rocket Lab is only building the spacecraft, including most of the nonscientific onboard components: navigation, orientation, propulsion, etc.

“ESCAPADE is an innovative mission that demonstrates that advanced interplanetary science is now within reach for a fraction of traditional costs, and we’re proud to make it possible with Photon. We are delighted to receive the green light from NASA to proceed to flight,” said Rocket Lab founder and CEO Peter Beck in the company’s announcement of the milestone.

Rocket Lab is already under contract to lift a CubeSat to cislunar orbit for Artemis purposes, and has locked in a deal with Varda Space Industries to build that company’s spacecraft, for launch in 2023 and 2024.